Подводные кабели. Их едят акулы

То, что вы видите выше, это подводный кабель связи.

Диаметром он 69 миллиметров, и именно он переносит 99% из всего международного трафика связи (т.е. интернет, телефония и прочие данные). Соединяет он все континенты нашей планеты, за исключением Антарктиды. Эти удивительные волоконно-оптические кабели пересекают все океаны, и длинной они сотни тысяч, да что говорить, миллионы километров.


Карта Мира подводной кабельной сети

Это «CS Cable Innovator», он специально разработан для прокладки волоконно-оптического кабеля и является крупнейшим в своем роде кораблем в мире. Построен он в 1995 году в Финляндии, он 145 метров в длину, а шириной он 24 метра. Он способен перевозить до 8500 тонн волоконно-оптического кабеля. Корабль имеет 80 кают, из которых 42 — каюты офицеров, 36 — каюты экипажа и две каюты класса люкс.
Без технического обслуживания и дозаправки он может трудиться 42 дня, а если его будет сопровождать корабль поддержки, то все 60.

Первоначально, подводные кабели были простыми соединения типа точка-точка. Сейчас же подводные кабели стали сложнее и они могут делиться и разветвляться прямо на дне океана.

С 2012 года провайдера был успешно продемонстрирован подводный канал передачи данных с пропускной способностью в 100 Гбит/с. Тянется он через весь Атлантический океан и длина его равна 6000 километрам. Представьте себе, что три года назад пропускная способность меатлантического канала связи была в 2,5 раза меньше и была равна 40 Гбит/с. Сейчас корабли подобные «CS Cable Innovator» постоянно трудятся дабы обеспечивать нас всё быстрым межконтинентальным интернетом.

Сечение подводного кабеля связи

1. Полиэтилен
2. Майларовое покрытие
3. Многожильные стальные провода
4. Алюминиевая защита от воды
5. Поликарбонат
6. Медная или алюминиевая трубка
7. Вазелин
8. Оптические волокна

По дну моря оптоволоконный кабель укладывается за один раз от одного берега до другого. В некоторых случаях для организации ВОЛС по дну моря/океана требуется несколько кораблей, так как необходимое количество кабеля на одно судно может не поместиться.

Подводные оптоволоконные линии связи делятся на репитерные (с использованием подводных оптических усилителей) и безрепитерные. Первые из них подразделяются на прибрежные линии связи и магистральные трансокеанские (межконтинентальные). Безрепитерные линии связи делятся на прибрежные линии связи и линии связи между отдельными пунктами (между материком и островами, материком и буровыми станциями, между островами). Существуют и линии связи с применением удаленной оптической накачки.

Кабели ВОЛС для прокладки по дну, как правило, состоят из оптического сердечника, токоведущей жилы и внешних защитных покровов. Кабели для безрепитерных оптоволоконных линий имеют такую же структуру, но у них токоведущая жила отсутствует.

Особые проблемы прокладки ВОЛС через водные препятствия (под)водой связаны с ремонтом морских линий связи. Ведь, лежа долгое время на морском дне, кабель становится практически невидимым. Кроме того, течения могут отнести оптоволоконный кабель от места его первоначальной прокладки (даже на многие километры), а рельеф дна сложен и разнообразен. Повреждения кабелю могут наноситься якорями кораблей и представителями морской фауны. Возможно также отрицательное воздействие на него при дноуглубительных работах, установке труб и бурении, а также при подводных землетрясениях и оползнях.

Вот так он выглядит на дне. Каковы экологические последствия прокладки телекоммуникационных кабелей на морском дне? Как это влияет на дно океана и животных, которые там живут? Хотя буквально миллионы километров кабелей связи были размещены на дне моря в течение последнего столетия, это никак не повлияло на жизнь подводных обитателей. Согласно недавнему исследованию, кабель оказывает лишь незначительные воздействия на животных, живущих и находится в пределах морского дна. На фотографии выше мы видим разнообразие морской жизни рядом с подводным кабелем, который пересекает континентальный шельф Half Moon Bay.
Тут кабель всего лишь 3,2 см. толщины.

Многие опасались, что кабельное телевидение загрузит каналы, но на самом деле оно увеличило нагрузку всего лишь на 1 процент. Причем кабельное телевидение, которое может идти по подводным волокнам уже сейчас имеет пропускную способность в 1 Терабит, в то время как спутники дают в 100 раз меньше. И если хотите купить себе такой межатлантический кабель, то он вам обойдется в 200-500 миллионов долларов.

А вот сейчас я вам расскажу про первый кабель через океан. Вот слушайте …

Вопрос о том, как наладить электрическую связь через огромные просторы Атлантического океана, разделяющего Европу и Америку, волновал умы ученых, техников и изобретателей уже с начала сороковых годов. Еще в те времена американский изобретатель пишущего телеграфа Самуэль Морзе высказал уверенность в том, что возможно проложить телеграфный «провод по дну Атлантического океана».

Первая мысль о подводном телеграфировании возникла у английского физика Уитстона, который в 1840 году предложил свой проект соединения Англии и Франции телеграфной связью. Его идея была, однако, отвергнута как неосуществимая. К тому же в то время не умели еще так надежно изолировать провода, чтобы они могли проводить электрический ток, находясь на дне морей и океанов.

Положение изменилось после того, как в Европу доставили вновь открытое в Индии вещество — гуттаперчу, и германский изобретатель Вернер Сименс предложил покрывать ею провода для изоляции. Гуттаперча как нельзя более подходит для изоляции именно подводных проводов, ибо, окисляясь и ссыхаясь в воздухе, она нисколько не изменяется в воде и может сохраняться там неопределенно долгое время. Так был решен важнейший вопрос об изоляции подводных проводов.

23 августа 1850 года в море вышло для прокладки кабеля специальное судно «Голиаф» с буксирным пароходом.

Путь их лежал от Дувра к берегам Франции. Впереди шло военное судно «Вигдеон», указывавшее «Голиафу» и буксиру заранее определенный путь, отмеченный буями с развевавшимися на них флагами.

Все шло хорошо. Установленный на борту парохода цилиндр, на который был намотан кабель, равномерно разматывался, и провод погружался в воду. Через каждые 15 минут к проводу подвешивали груз в 10 килограммов 4 свинца, чтобы он погружался на самое дно. На четвертые сутки «Голиаф> достиг французского берега, кабель был выведен на сушу я соединен с телеграфным аппаратом. В Дувр по подводному кабелю была послана приветственная телеграмма из 100 слов. Огромная толпа, собравшаяся в Дувре у конторы телеграфной компании и с нетерпением ожидавшая вестей из Франции, с большим воодушевлением приветствовала рождение подводной телеграфии.

Увы, эти восторги оказались преждевременными! Первая телеграмма, переданная по подводному кабелю с французского берега в Дувр, оказалась и последней. Кабель внезапно отказался работать. Только через некоторое время узнали причину столь внезапной порчи. Оказалось, что какой-то французский рыбак, закидывая невод, случайно зацепил кабель и вырвал из него кусок.

Но все же, несмотря на первую неудачу, даже самые ярые скептики поверили в подводную телеграфию. Джон Бретт организовал в 1851 году второе акционерное общество для продолжения дела. На этот раз был уже учтен опыт первой прокладки, и новый кабель был устроен по совершенно другому образцу. Этот кабель отличался от первого: он весил 166 тони, в то время как вес первого кабеля не превышал 14 тонн.

На этот раз предприятие увенчалось полным успехом. Специальное судно, укладывавшее кабель, прошло без особых затруднений путь из Дувра до Кале, где конец кабеля был соединен с телеграфным аппаратом, установленным в палатке прямо на прибрежном утесе.

Через год, 1 ноября 1852 года было установлено прямое телеграфное сообщение между Лондоном и Парижем. Вскоре Англия была соединена подводным кабелем с Ирландией, Германией, Голландией и Бельгией. Затем телеграф связал Швецию с Норвегией, Италию - с Сардинией и Корсикой. В 1854-1855 гг. был проложен подводный кабель через Средиземное и Черное моря. По этому кабелю командование союзных войск, осаждающих Севастополь, сносилось со своими правительствами.

После успеха этих первых подводных линий вопрос о прокладке кабеля через Атлантический океан для соединения Америки с Европой телеграфной связью был поставлен уже практически. За это грандиозное дело взялся энергичный американский предприниматель Сайрос Филд, образовавший в 1856 году «Трансатлантическую компанию».

Невыясненным был, в частности, вопрос о том, может ли электрический ток пробежать огромное расстояние в 4-5 тысяч километров, отделяющее Европу от Америки. Ветеран телеграфного дела Самуэль Морзе ответил на этот вопрос утвердительно. Для большей уверенности Филд обратился к английскому правительству с просьбой соединить в одну линию все имевшиеся в его распоряжении провода и пропустить через них ток. В ночь на 9 декабря 1856 года все воздушные, подземные и подводные провода Англии и Ирландии были соединены в одну непрерывную цепь длиной в 8 тысяч километров. Ток легко прошел через громадную цепь, и с этой стороны больше сомнений не было.

Собрав все необходимые предварительные сведения, Филд приступил в феврале 1857 года к изготовлению кабеля. Кабель состоял из семипроволочного медного каната с гуттаперчевой оболочкой. Жилы его были обложены просмоленной пенькой, а снаружи кабель был еще обвит 18 шнурами из 7 железных проволок каждый. В таком виде кабель длиной в 4 тысячи километров весил три тысячи тонн. Это значит, что для его перевозки по железной дороге понадобился бы состав из 183 товарных вагонов.

История прокладки кабеля изобылует массой непредвиденных обстоятельств. Он несколько раз обрывался, спаянные куски «не желали» доставлять енергию к месту назначения.

Неутомимый Сайрое Филд организовал компанию, чтобы еще раз попытаться проложить кабель через неподатливый океан. Изготовленный компанией новый кабель состоял из семипроволочного шнура, изолированного четырьмя слоями. Снаружи кабель был покрыт слоем «просмоленной пеньки и обмотан десятью стальными проволоками. Для прокладки кабеля было приспособлено специальное судно «Грейт Истерн» — в прошлом прекрасно оборудованный океанский пароход, не окупавший расходов по пассажирскому движению и снятый с рейсов.

Уже на другой день после отплытия с Грейт Истерн электротехники обнаружили, что по кабелю прекратилось прохождение тока. Пароход, проделав чрезвычайно сложный и опасный маневр, во время которого чуть было не произошел разрыв кабеля, сделал полный поворот и стал обратно наматывать уже спущенный на дно кабель. Вскоре, когда кабель стал подниматься из воды, все заметили причину порчи: через кабель был проткнут острый железный прут, задевший гуттаперчевую изоляцию. Кабель портился еще дважды. Когда стали поднимать обратно кабель с глубины 4 тысяч метров, он от сильного натяжения оборвался и утонул.

Компания изготовила новый кабель, значительно улучшенный по сравнению с прежним. «Грейт Истерн» был оборудован новыми машинами для укладки кабеля, а также специальными приспособлениями, предназначенными для подъема кабеля со дна. Новая экспедиция отправилась в путь 7 июля 1866 года. На этот раз полный успех увенчал отважное предприятие: «Прейт Истерн» достиг американского берега, проложив, наконец, телеграфный кабель через океан. Этот «кабель действовал почти без перерыва в течение семи лет.

Третий трансатлантический кабель был проложен англоамериканской телеграфной компанией в 1873 году. Он соединял Пти-Минон возле Бреста во Франции с Ньюфаундлендом. В течение последующих 11 лет та же компания проложила между Валенсией и Ньюфаундлендом еще четыре кабеля. В 1874 году была построена телеграфная линия, соединявшая Европу с Южной Америкой.

В 1809 году, то есть через три года после прокладки подводного кабеля через Атлантический океан, была завершена постройка еще одного грандиозного телеграфного предприятия — Индо-европейской линии. Эта линия соединила двойным проводом Калькутту с Лондоном. Длина ее — 10 тысяч километров.

Принято думать, что мировая информационная паутина — это нечто неосязаемое. И отчасти это так. Атмосфера планеты за последнюю сотню лет превратилась из банальной смеси азота и кислорода в густой бульон из радиоволн. Но не стоит заблуждаться — каждый бит информации, прежде чем стать эфирным электромагнитным излучением, обязательно проделывает неблизкий путь по проводам, большая часть которых проложена по океанскому дну.

Владимир Санников

Попытки соединить континенты проводами начались в первые же годы после изобретения самого телеграфа. В 1840 году английский профессор Уитстон представил на рассмотрение парламента проект прокладки подводного кабеля от Дувра к французскому берегу, но не получил согласия законодателей и, соответственно, денег.

Через два года изобретатель наиболее распространенной версии телеграфа Сэмюэл Морзе связал кабелем берега бухты Нью-Йорка и передал по нему сообщение. Тогда же он предсказал, что через недолгое время телеграф свяжет Старый Свет с Новым. Через десятилетие после этого компания братьев Джона и Джекоба Бреттов запустила телеграфное сообщение между Англией и Францией, проложив одножильный медный провод, одетый в гуттаперчу и стальную оплетку, под водами Ла-Манша.


Nexans Skaggerak — специализированное судно, построенное в 1976 году новрежской компанией Øgreys Mekaniske Verksted для подводной прокладки силовых кабелей и шлангопроводов. В марте 2010 года модернизирован в ремонтных доках Cammell Laird в Биркенхеде, Англия. Судно было распилено поперек, и между двумя его половинками была вварена дополнительная секция длиной 12.5 метра. Также на Skagerrak установили новую поворотную платформу. Справа на фото — силовой кабель, предназначенный для укладки в море, поступает с берега по специальному транспортеру, исключающему слишком резкие перегибы, и складируется в специальном отсеке, цилиндрической формы. Современный подводный силовой кабель может иметь диаметр порядка 100 мм. Метр такой «ниточки» вполне может потянуть на пару десятков килограмм, поэтому немудрено, что для контроля укладки требуются несколько дюжих рабочих. Снизу на фото — поворотная платформа, установленная на Skagerrak, имеет диаметр 29 метров и полезную нагрузку 7000 тонн, при объеме 2000 кубометров.

Человеком, соединившим мгновенной связью Старый и Новый Свет, стал американский предприниматель Сайрус Филд, основавший в 1854 году «Нью-Йоркско-Ньюфаундлендскую и Лондонскую телеграфную компанию». Вице-президентом стал известный нам Сэмюэл Морзе. Укладка кабеля началась в 1857 году при содействии правительств США и Великобритании, предоставивших для использования в роли кабелеукладчиков военные корабли: пароходофрегат «Ниагара» и парусно-паровой линкор «Агамемнон». На дно Атлантики было уложено 620 км кабеля, после чего он оборвался.

Следующая попытка была предпринята через год — «Ниагара» и «Агамемнон», соединив концы кабеля посередине океана, отправились в разные стороны. После нескольких обрывов корабли вернулись в Ирландию для пополнения запасов. Следующий старт — в июле того же года — принес успех, на который уже мало кто надеялся. Но… телеграф проработал около месяца и замолчал.


Неутомимый Филд вернулся к своей затее в 1865 году, зафрахтовав в качестве кабелеукладчика крупнейшее судно той поры — «Грейт Истерн». С него на дно было уложено три четверти линии, когда 2 августа кабель вновь оборвался и ушел на дно. Наконец, в 1866 году телеграфная линия пересекла Атлантику, а в самом начале прошлого века — безбрежный Тихий океан.

Вплоть до 30-х годов XX века главной проблемой межконтинентальных коммуникаций было низкое качество изоляции. Основными материалами для ее изготовления служили натуральные полимеры каучук и гуттаперча, сверху кабель обвивался броней из стальной проволоки, а на прибрежных участках броня иногда делалась двухслойной для защиты от якорей и рыбацких снастей.


Возможность мгновенной передачи данных на тысячи километров сейчас воспринимается как должное — уже полторы сотни лет никто не удивляется. Но за очевидностью стоят немаленькие технологические ухищрения. Всемирная Сеть — это не только пропускная способность и протяженность, но еще масса и объем. Чтобы убедится в этом достаточно поглядеть на барабан, в котором хранится свернутый кабель. Размеры этой «катушки» вполне соответствуют масштабам решаемых задач. Современный кабельный барабан на специализированном судне — это тысячи тонн и кубометров плюс специальные системы для укладки кабеля и его размотки. А барабанов таких на флагманах «проводного флота» — по три-четыре. Конструкция должна обеспечить намотку, размотку и хранение кабеля без перегибов, сильных нагрузок и прочего экстрима. Именно с этим связан большой диаметр «катушки» — современные подводные провода не рассчитаны на сколь-нибудь серьезный изгиб, поэтому сворачивать моток слишком туго нельзя — сломается.

Сегодняшние оптоволоконные кабели имеют многоуровневую защиту от едкой морской воды и механических повреждений. Пучок передающих волокон «плавает» в гелевом гидрофобном наполнителе внутри медной или алюминиевой трубки, покрытой слоем эластичного поликарбоната и алюминиевым экраном. Следующий слой- скрученная стальная проволока, обернутая майларовой лентой. Снаружи кабель одет в полиэтиленовую «рубашку». Другой вариант — кабель с профилированным несущим сердечником. В такой схеме до восьми оптических пар помещаются внутри каждого из шести экструдированных в полиэтиленовом шнуре каналов, заполненных гелем. Пары защищены навитой майларовой лентой, медным экраном и толстой полиэтиленовой оплеткой. В центре шнура проложена толстая стальная проволока для придания кабелю жесткости. Гарантия на подводные кабели связи — не менее 25 лет.

Откуда разматывают интернет

Первая попытка использовать подводный кабель для передачи сигнала — тогда еще не телеграфного — была предпринята в России в 1812 году П. Шиллингом для подрыва с берега морских мин, снабженных электрическим запалом.
Первая попытка проложить телеграфный кабель под водой была предпринята в 1839 году в Индии. Восточно-Индийская телеграфная компания проложила кабель по дну реки Хугли, неподалеку от Калькутты. К сожалению, данные об использовании линии до нас не дошли.
Первый трансатлантический кабель, проложенный между в 1858 году, прослужил всего около месяца. Кабели 1865−66 гг служили без ремонта около пяти лет, а ряд секций кабеля 1873 года (Ирландия — Ньюфаундленд) — около девяноста лет.
К 1900 году в мире было проложено 1750 подводных телеграфных линий общей протяженностью около 300 тысяч километров. Первая телефонная линия через Атлантику была уложена в 1956 году.
Самый длинный подводный силовой кабель проложен по дну Северного моря между г. Эемсхавен (Нидерланды) и Феда (Норвегия). Длина линии NorNed — 580 км, она рассчитана на 700 МВт. Эксплуатация началась в мае 2008 года.
Длина линии Unity, соединившей в 2010 году Японию (город Чикура) с западным побережьем США (Лос-Анжелес) по дну Тихого океана, составляет 10 тыс. км, пропускная способность — 7.68 Тбит/с.

Высоковольтные магистрали, связывающие с Большой землей острова, нефтяные платформы и ветряные электростанции, защищены еще лучше коммуникационных. Проводниками обычно служат три медные жилы, каждая из которых экранирована полупроводниковой лентой и толстым слоем изолятора из сшитого полиэтилена. Поверх изолятора проложен еще один экран, навита водонепроницаемая лента. Снаружи каждая токопроводящая жила закрыта герметичной свинцовой оболочкой и антикоррозионной полиэтиленовой оплеткой. Если в качестве основного изолятора используется этиленпропиленовая резина (ЭПР), свинцовый слой зачастую не используется в целях облегчения конструкции. В состав современного силового кабеля обязательно включается как минимум одна оптоволоконная пара для передачи данных. Проводники и оптоволокно заливаются полипропиленом или полиэтиленом, покрываются лентой-усилителем, полимерной оплеткой, броней из стальной проволоки и еще одним слоем из полиэтиленовой пряжи толщиной не менее 4 мм. Как правило, такие кабели служат верой и правдой десятки лет. Быстрое развитие морской ветроэнергетики и нефтегазодобычи привело к тому, что в настоящее время все имеющиеся на планете восемь заводов по производству подводного силового кабеля работают на пределе мощности. И спрос на их продукцию только растет.


Итальянский кабелеукладчик Gliulio Verne

Дело техники

Итак, мировой спрос на трафик просто сумасшедший — по данным агентства Telegeography, с 2007 года он растет на 100% в год. Подводные линии электропередач разрастаются вместе с альтернативной энергетикой. Отличный кабель у нас имеется. Остается только соединить им острова и континенты.

Создание подводной кабельной системы — сложнейшая операция, выполняемая профессионалами экстра-класса в экстремальных условиях с хирургической точностью. Первым делом выявляется оптимальный маршрут. С помощью специальных судов, оснащенных гидролокаторами бокового обзора, подводными аппаратами с дистанционным управлением и акустическими профилометрами Доплера, океанологи исследуют участки дна, на которые вскоре ляжет нить. Тщательно фиксируются и анализируются высотный профиль маршрута, состав донного грунта, сейсмическая активность зоны, наличие и характер течений, естественных и искусственных препятствий в коридоре прокладки. По полученным данным составляется конфигурация линии и технологическая карта прокладки. На критически важные точки маршрута выставляются бакены, оснащенные GPS-передатчиками и радиомаяками. Лишь после этого в дело вступают суда-кабелеукладчики.


Cable Innovator водоизмещением 10557 тонн — самое большое в мире судно, созданное для прокладки оптического кабеля. Построено в 1995 году на финских верфях Kvaerner Masa, принадлежит компании Global Marine Systems. Три 17-метровых барабана могут вместить по 2333 тонны кабеля каждый. 60 дней корабль с экипажем в восемь десятков человек может функционировать в режиме полной автономности, разматывая кабельную линию на скорости до 6.6 узлов (чуть больше 12 км/ч).

Серьезных различий между кабельными судами для прокладки силовых и коммуникационных линий нет. Разница лишь в специфической оснастке. Кроме того, «силовики» обычно работают в прибрежных районах, а оптику тянут на тысячи километров в открытом море. Самые большие и производительные в мире суда, специализирующиеся на высоковольтных магистралях, — норвежский укладчик Skagerrak, принадлежащий компании Nexans, и Giulio Verne итальянской корпорации Prysmian Group. Cable Innovator из флотилии Global Marine Systems водоизмещением 10557 т не имеет равных среди «связистов» — он может взять на борт 8500 км оптического кабеля. Крупнейшие флотилии кабельных судов базируются в Тихом океане — восемь судов трудятся на американскую компанию SubCom и столько же на ее японского конкурента NEC. Характерные особенности кабелеукладчиков — малая рабочая осадка, не превышающая 10 м, обязательное оснащение системами динамического позиционирования и гидроакустической ориентации, а также чрезвычайно чувствительные движители, позволяющие регулировать скорость с аптекарской точностью. Современный кабелеукладчик оснащен многошкивной кабельной машиной-лебедкой, развивающей тягу до 50 т, спускающей кабель в воду со скоростью порядка 1,5 км/ч. Кроме того, на борту имеются краны для погружения и подъема подводных аппаратов, устройства для сращивания и резки, водолазное оборудование и многое другое.


Схематическая карта первого трансатлантического кабеля, проложенного по дну летом 1858 года. Из-за несовершенства конструкции, плохой изоляции и использования слишком большого напряжения для передачи, линия связи тогда проработала всего около месяца, причем качество и, соответственно, скорость связи все время были ниже всякой критики. 1 сентября 1858 года через Атлантику было передано последнее сообщение, после чего континенты вновь оказались разъединенными. К 1861 году в различных частях света были проложены около 20 тысяч километров подводного кабеля, но в рабочем состоянии было не более четверти из них. Америка и Европа были окончательно соединены телеграфом 27 июля 1866 года, после чего связь уже никогда не прерывалась более, чем на несколько часов.

Аренда такого чуда техники тянет примерно на $100000 в сутки, тем не менее спрос превышает предложение. К примеру, кабелеукладчик Tyco Resolute компании SubCom, цилиндрические ангары которого вмещают 2500 км оптического кабеля, обеспечен работой на несколько лет вперед. То же можно сказать и о Skagerrak. Да и остальные не сидят без работы: рыболовные снасти, корабельные якоря, оползни и землетрясения, повреждающие подводные магистрали, держат эскадру кабельных судов в постоянной боевой готовности. Зафиксированы случаи разрыва кабеля из-за укусов акул и даже хищения десятков километров силовых линий пиратами. Только в Атлантике выполняется до 50 ремонтных операций в год. Но это дело техники…


На дно

Укладка любого кабеля начинается с суши. Эту ювелирную операцию обычно проводит команда опытных водолазов. Кабелеукладчик подходит к берегу поближе, встает по заданному курсу и стравливает на воду требуемый отрезок «нитки», соединенный с вытяжным тросом, предварительно заведенным с берега через врытую в грунт длинную трубу. В ходе этой операции вытравленный кабель висит на поплавках во избежание критических перегибов и спутывания. Процесс вывода троса и кабеля на соединительный щиток контролируется визуально посредством телекамер — починить этот отрезок линии впоследствии будет гораздо сложнее, чем какой-либо другой. Проверка целостности кабеля подачей сигнала (или напряжения, если он силовой) происходит во время укладки в постоянном режиме. Если все в норме — труба замуровывается со стороны моря, из нее откачивается вода, а вместо нее внутрь подается антикоррозийная смесь ингибиторов, биоцидов, убивающих водные бактерии, и раскислителя, поглощающего кислород. Береговая укладка, несмотря на кажущуюся простоту, — самый долгий этап работ. Команде Бьорна Ладегаарда, инженера компании Nexans, понадобилось целых три недели, чтобы в январе этого года подцепить к сети силовую ветку на пляжах Майорки на участке всего около 500 м!


В открытом море все проще, но и там свои трудности. Рельеф морского дна редко бывает достаточно удобным для так называемой свободной укладки, когда «нитка» опускается прямо на грунт. Так, силовую магистраль между Испанией и Балеарами пришлось зарывать на участке 283 км, в том числе на глубинах более километра. Еще 23 км были вырублены в скале!

В подводных дебрях незаменимые помощники инженеров — глубоководные аппараты с дистанционным управлением через шланг-кабель. Специалисты компании Nexans имеют в своем распоряжении три машины. Маленький и юркий CapTrack с комплексом датчиков, трансмиттером GPS, мощными прожекторами и телекамерами предназначен для оперативного мониторинга и точной укладки «нитки» на дно. На участках с экстремально сложным рельефом используется подводный бульдозер Spider с дополнительным «вооружением» в виде буровой головки, водометов и мощного насоса. Рука-манипулятор Spider может оснащаться целой кучей жутких инструментов, предназначенных для разрушения. Большую же часть работы на маршрутах выполняет траншейная машина Capjet со своим плугом-водометом. Вскрытый грунт постоянно откачивается насосом из полутораметровой траншеи и подается за корму Capjet, засыпая уложенный кабель.


Когда на пути прокладки оказываются более серьезные препятствия, инженеры используют арочные системы перехода. Кабель в специальном рукаве подвешивается на заякоренных герметичных стальных баллонах, наполненных воздухом. При наличии «попутных» трубопроводов кабель закрепляется на них специальными клипсами. Если через трубы приходится «перешагивать», применяются бетонные мостики или защитные рукава, укладываемые в нужном месте подводными аппаратами. В зонах с устойчивыми донными течениями кабель, как и любое цилиндрическое тело, подвергается разрушительному воздействию вихревых вибраций. Постепенно эти незаметные глазу высокочастотные колебания разрушают даже железобетонные балки. Для борьбы с этой бедой «нитка» одевается в пластиковое спиралевидное «оперение». Чтобы предотвратить перетирание изоляции о скалистый грунт, используются мягкие полиуретановые маты или ленточные протекторы. Все операции по удлинению, разветвлению кабеля, установке на него усилителей и контрольной аппаратуры производятся на судне непосредственно перед укладкой данного участка на дно. На финише маршрута кабелеукладчик повторяет операцию по выводу магистрали на берег. После этого линия тестируется и запускается в эксплуатацию.

А не проще ли запустить на орбиту пару спутников, спросите вы? Не проще. Скорости не те — мегабиты в секунду для XXI века уже не годятся. Да и гигабиты — тоже. Подводные терабиты совсем другое дело…

На фото изображен подводный кабель для передачи сигналов в линиях связи. Его диаметр составляет 69 мм и это совсем немного, если учесть тот факт, что через него проходит до 99% мирового трафика: телефонная связь, Интернет и так далее. Именно этот кабель «знает» ответ на вопрос, как устроен Интернет, поскольку позволяет пользователям виртуально попадать во все уголки мира, разве что, не считая Антарктиды. Длиной в миллионы километров кабель из волоконных световодов, передающий оптические сигналы, пересекает дно всех океанов.

Этот корабль под названием «CS Cable Innovator», построенный в 1995 году, предназначен для прокладки именно таких кабелей. Это крупнейшее судно в мире по своей специализации с 42 каютами для офицеров, 36 каютами для экипажа и двумя люкс-каютами.

Его возможности впечатляют: длиной в 145 м и шириной в 24 м корабль может транспортировать около 8,5 тысяч тонн кабеля и находиться в работе почти 1,5 месяца без дозаправки и техобслуживания, а в сопровождении специального корабля поддержки – до 3 месяцев беспрерывной работы.

Изначально сетевые кабели имели довольно простое соединение – от точки до точки. Да и скорость оставляла желать лучшего, всего 40 Гбит/сек. Сегодня же их закладка стала структурнее, со сложными разветвлениями по дну океана. А в 2012 году провайдерами был представлен канал для передачи данных в линии связи со скоростью 100 Гбит/сек. Его протяженность в 6000 километров занимает весь Атлантический океан.

Именно корабли наподобие «CS Cable Innovator» ежедневно работают над прокладкой кабелей, чтобы обеспечить мировое население Интернетом все с большей и большей скоростью передачи сигнала.

Перечень материалов из которых состоит подводный кабель:

  1. верхняя оболочка – полиэтилен;
  2. далее идет покрытие из майлара;
  3. стальные провода с многожильной структурой;
  4. водостойкая защита из алюминия;
  5. оболочка из поликарбоната;
  6. трубка из алюминия или меди;
  7. вазелиновая смазка;
  8. и, наконец, оптические волокна.

С момента появления этих технологий у многих неравнодушных к экологии периодически возникает вопрос, имеет ли какое-то негативное влияние волоконно-оптические каналы на флору и фауну подводного мира? Как показали исследования, проложенные за последнее время миллионы километров подводных кабелей, если и имеют какое-либо незначительное воздействие на морских жителей, то только на тех, кто обитает непосредственно в пределах дна.


А на следующем изображении показан непрерывный процесс укладки оптоволоконного кабеля по океаническому дну из точки A в точку B.


Также стоит отметить, когда запустили кабельное ТВ по подводным волокнам, были опасения излишней нагрузки на каналы, но они оказались напрасными. Общая напряженность работы увеличилась всего на 1%, а кабельное ТВ приобрело пропускную способность в 1Тб, что в сотню раз больше, чем выдают спутники. Если вы желаете стать владельцем такого межатлантического канала, вам придется раскошелиться на кругленькую сумму – от 200 до 500 млн долларов.

Подводные коаксиальные кабели предназначены для телеграфно-телефонной связи с. уплотнением в диапазоне частот до 150 кгц. Наиболее совершенной конструкцией подводных кабелей связи в больших длинах являются коаксиальные кабели с полиэтиленовой изоляцией, вытеснившей изоляцию из гуттаперчи, парагутты и др. Кабель- с полиэтиленовой изоляцией допускает высокочастотное уплотнение цепей при сравнительно больших расстояниях между усилительными пунктами, обеспечивая длительную и надежную эксплуатацию. Разработанные в 1950-1955 гг. встроенные в кабель подводные усилители открыли возможность осуществить многоканальную связь на требуемые расстояния. Электропитание усилителей осуществляют дистанционно по внутреннему проводнику кабеля.

Основным типом подводного коаксиального кабеля с полиэтиленовой изоляцией, выпускаемого отечественной промышленностью для прокладки на прибрежных участках, является кабель марки КПЭК-5/18 (рис. 20-6).

Трансокеанические подводные кабели связи

Внутренний проводник этого кабеля изготовляют из отожженной медной проволоки диаметром 3 мм и повива из 12 проволок диаметром 1,0 мм (наружный диаметр 5± ±0,3 мм). Изоляцию кабеля накладывают из смеси полиэтилена с полиизобутиленом толщиной 6,5 мм. Внешний проводник кабеля изготовляют из отожженных прямоугольных медных проволок шириной 5,3 и толщиной 0,6 мм, обматывают медной лентой толщиной 0,08 мм, двумя стальными лентами толщиной 0,10-0,15 мм и прорезиненной лентой и накладывают оболочку из полиэтилена или поливинилхлоридного пластиката толщиной 2 мм и подушку из кабельной пряжи, пропитанной противогнилостным составом. В кабелях марки КПЭК-5/18 на подушку накладывают двухслойную броню из круглых оцинкованных стальных проволок диаметром 4 и 6 мм, наружный покров из предварительно пропитанной противогнилостным составом кабельной пряжи толщиной не менее 1,6 мм и слой битума и мелового раствора.

Для подводной прокладки на глубину до 3 500 м предназначен кабель марки КПК-5/18 только с одним слоем круглой оцинкованной стальной проволоки диаметром 2,6-6 мм.

В кабелях КПЭБ-5/18 для прокладки в земле поверх подушки применяют две стальные ленты толщиной 0,5 мм и защитные покровы из кабельной пряжи, слоя битума и мелового раствора.

Сопротивление изоляции подводных кабелей не менее 50 000 Момoкм, емкость 100 нф/км; волновое сопротивление кабеля 51-54,5 ом, затухание 13,3 — 67мнеп/км и угол фазы 0,065-3,17 рад/км.

Трансантлантический кабель между Европой и США протяженностью свыше 5 000 км (проложен на глубине до 4,2 км) имеет внутренний проводник, состоящий из медной проволоки диаметром 3,34 мм и трех медных лент толщиной по 0,368 мм (диаметр 4,1 мм), и сплошную изоляцию из полиэтилена диаметром 15,75 мм. Внешний проводник кабеля состоит из 6 медных лент толщиной 0,4 мм и медной скрепляющей ленты толщиной 0,076 мм. Поверх внешнего проводника накладывают ленту из сплава телканекс, подушку из кабельной пряжи, броню из круглых оцинкованных.стальных проволок и наружный защитный покров из кабельной пряжи, слой битума и меловое покрытие. Кабель для глубоководных участков трассы изготовляют бронированным круглой стальной проволокой диаметром 2,2 мм высокой механической прочности. Кабель для прибрежного участка изготовляют с двойной броней из круглых стальных проволок диаметром 7,6 мм. Встроенные усилители размещены на расстоянии 68,5 км один от другого.

В 1956 г. была разработана новая конструкция подводного коаксиального кабеля для глубоководных участков, в котором на несущий трос диаметром 7,4 мм накладывают внутренний проводник из медной ленты толщиной 0,6 мм со сварным швом, калиброванным на диаметр 8,4 мм, полиэтиленовую изоляцию диаметром 26,5 мм, которую калибруют до диаметра 25,4 мм. Затем продольно накладывают внешний проводник из медной ленты толщиной 0,25 мм с перекрытием и оболочку из светостабилизированного полиэтилена толщиной 3,2 мм (рис. 20-7). Кабель предназначен для уплотнения системой связи на 128 каналов с дальнейшим расширением передаваемого спектра частот до 3 Мгц и увеличением числа каналов до 720. (В последующем спектр передаваемых частот достигнет 10 Мгц.

Симметричные подводные кабели связи марок СЭПК-4 изготовляют с токоподводящими жилами из семи медных проволок диаметром 0,52 или 0,73 мм с полиэтиленовой изоляцией толщиной 2 мм. На изолированные токопроводящие жилы, предназначенные для телеграфной связи, накладывают экран из медных лент. Четыре жилы скручивают вместе, обматывают прорезиненным миткалем и кабельной пряжей, поверх которой накладывают броню из оцинкованных стальных проволок. Кабель с жилами 7×0,73 мм в диапазоне частот 0,8-30 кгц имеет волновое сопротивление 349-160 ом, затухание 45-130 мнеп/км и угол фазы 0,06- 1,20 рад/км.

Ниже приведено 10 малоизвестных фактов о подводных Интернет-кабелях.

При описании системы проводов, из которой состоит Интернет, Нил Стивенсон однажды сравнил нашу землю с материнской платой компьютера. От телефонных столбов, с которых свисают связки кабеля, до знаков, предупреждающих о погруженных в землю волоконно-оптических линий передачи, мы постоянно окружены доказательствами присутствия системы Интернет. Однако, мы видим лишь малую часть физического состава сети. Остальную часть можно найти только в самых холодных водах глубоководного океана. Ниже приведено 10 малоизвестных фактов о подводных Интернет-кабелях.

1. УСТАНОВКА КАБЕЛЯ ЯВЛЯЕТСЯ МЕДЛЕННОЙ, УТОМИТЕЛЬНОЙ И ДОРОГОСТОЯЩЕЙ РАБОТОЙ.

99% международных данных передается по проводам, находящимся на дне океана. Они называются подводными коммуникационными кабелями. В общей сложности они протягиваются на сотни тысяч миль, а глубина их расположения может быть высотою с Эверест. Кабеля по океану прокладываются специальными судами - так называемыми кабелеукладчиками. Прокладка кабеля очень трудоемкая работа - поверхность океанского дна под прокладку кабеля должна быть обязательно ровной, также нужно предусмотреть, чтобы кабель не оказался на коралловых рифах, затонувших кораблях, местности богатой окаменелыми останками рыб или другой экологической среды обитания, и других препятствий.

Диаметр мелководного кабеля примерно равен диаметру жестяной банки содового напитка. Глубоководные кабеля намного тоньше - примерно равны диаметру маркера. Разница в размере связана с элементарной уязвимостью к повреждениям - на глубине более 2000 метров мало что происходит. Следовательно, и нет такой необходимости в оцинковании экранированного кабеля. Кабели, расположенные на небольших глубинах, закапывают под океаническое дно с помощью струй воды под высоким давлением.
Цена за укладку мили подводного коммуникационного кабеля зависит от общей длины и конечного пункта назначения. Однако, в общем укладка интернет-кабеля через океан неизменно стоит сотни миллионов долларов.

2. АКУЛЫ ПЫТАЮТСЯ СЪЕСТЬ ИНТЕРНЕТ.

Существует разногласие насчет того, почему акулам так нравится грызть подводные коммуникационные кабеля. Возможно, это как-то связано с электромагнитными полями. Возможно, это просто их любопытство. А возможно, они пытаются разрушить нашу инфраструктуру связи перед тем, как начать захват мира. В любом случае акулы продолжают грызть подводные кабеля, и это является самой распространенной причиной их повреждения. Компания Google решила проблему обернув свои подводные океанские кабеля в кевраловое покрытие.

3. ПОДВОДНЫЙ ИНТЕРНЕТ КАБЕЛЬ НАСТОЛЬКО ЖЕ УЯЗВИМ К ПОВРЕЖДЕНИЯМ, КАК И ПОДЗЕМНЫЙ КАБЕЛЬ.

Каждые несколько лет какой-нибудь благонамеренный строитель, маневрируя бульдозером, отключает интернет на весь регион. На океанском дне же хоть и нет всего этого строительного оборудования, которое могло бы вызвать разрушения, все же достаточно постоянных водных угроз для повреждения кабеля. Кроме акул, подводный коммуникационный кабель могут повредить якоря лодок, рыбацкие тралы и стихийные бедствия.

Одна компания из Торонто предложила проложить кабель через Арктику для соединения Токио и Лондона. Раньше такую затею считали невыполнимой, но с изменением климата и таянием ледников, эта идея стала реальной, хоть и очень дорогостоящей.

4. СОЕДИНЕНИЕ КОНТИНЕНТОВ ПОДВОДНЫМИ КАБЕЛЯМИ НЕ ЯВЛЯЕТСЯ НОВИНКОЙ.

Первый трансатлантический телеграфный кабель, который соединял Ньюфаундленд и Ирландию, начали прокладывать еще в 1854 году. Четыре года спустя было отправлено первое сообщение, в котором говорилось: «Господи, Уайтхаус получил пятиминутный сигнал. Сигнал от катушки слишком слабый, чтобы понять. Попробуйте медленнее и регулярнее. Я установил промежуточный шкив. Отвечайте с помощью катушки.» Конечно, не самое вдохновляющее начало. (Уилдман Уайтхаус был главным электриком Атлантической телеграфной компании)

5. ПОДВОДНЫЕ КОММУНИКАЦИОННЫЕ КАБЕЛЯ ИМЕЮТ ОСОБЫЙ ИНТЕРЕС У ШПИОНОВ.

В разгар холодной войны, СССР часто передавала слабо кодированные сообщения между двумя основными военно-морскими базами по кабелю проложенному между этими двумя базами через советские территориальные воды. Чрезмерным шифрованием советские офицеры не хотели заморачиваться. Они считали, что американцы не станут рисковать вызвать третью мировую войну, пытаясь получить доступ к данным этого кабеля. Они не рассчитали, что U.S.S. Halibut, специально оборудованная подводная лодка, может проникнуть через оборону советских войск.

Американская подводная лодка нашла кабель и установила на нем мощное подслушивающее устройство, затем каждый месяц возвращалась для сбора перехваченных сообщений. Эту операцию, которая называлась IVY BELLS, позже скомпроментировал бывший аналитик Агенства национальной безопасности Рональд Пелтон, который продал информацию о миссии советским властям. На сегодняшний день, перехват сообщений, передаваемых подводными коммуникационными кабелями является обычной процедурой спецслужб.

6. ПРАВИТЕЛЬСТВА МНОГИХ СТРАН ПЕРЕХОДЯТ НА ПОДВОДНЫЕ КАБЕЛЯ, ЧТОБЫ УБЕРЕЧЬ СЕБЯ ОТ ЭТИХ ЖЕ ШПИОНОВ.

Что касается электронного шпионажа, Соединенные Штаты имеют одно большое преимущество - их ученые, инженеры и корпорации сыграли важнейшую роль в изобретении и создании инфраструктуры глобальных коммуникаций. Самые крупные линии передачи, как правило, проходят через территорию и водные пространства США. В результате чего, они с легкостью могут перехватывать пересылаемые данные.

Когда бывший аналитик АНБ Эдвард Сноуден украл и обнародовал секретные документы, многие страны были возмущены тем, сколько их информации перехватывают американские разведывательные службы. В результате, некоторые страны пересматривают инфраструктуру Интернета. Бразилия, например, запустила проект по строительству подводного коммуникационного кабеля до Португалии, который не только полностью минует границы Соединенных Штатов, но в то же время исключает американские компании в участии данного проекта.

7. ПОДВОДНЫЕ КОММУНИКАЦИОННЫЕ КАБЕЛЯ ДЕШЕВЛЕ И БЫСТРЕЕ ПЕРЕДАЮТ ДАННЫЕ ПО СРАВНЕНИЮ СО СПУТНИКАМИ.

На орбите находится более тысячи спутников.

Мы также отправляем зонды на кометы и планируем миссии на Марс. Мы живем в будущем! Казалось бы космос должен быть лучшим методом для «виртуального проложения проводов» между странами, чем нынешний метод проложения несоразмерно-длинных проводов через океанское дно. Разве спутники не лучше технологий, используемых еще даже до изобретения телефона? Как оказывается - нет, не лучше (или пока что нет). Хотя волоконно-оптические кабели и спутники связи были разработаны в 1960-х годах, у спутников существует две проблемы: большие задержки и потери сигнала. Передача и прием сигналов из космоса занимает много времени. В то же время, исследователи разработали оптические волокна, которые могут передавать информацию со скоростью равной 99,7% скорости света.

Если хотите понять каким был бы интернет без подводных коммуникационных кабелей можете посетить Антарктику - единственный континент без физического подключения к сети. Связь с миром осуществляется исключительно при помощи спутников. Интересен тот факт, что антарктические исследовательские станции производят гораздо большее количество информации, чем они могут передавать через космическое пространство.

8. ЗАБУДЬТЕ О КИБЕРВОЙНАХ - ЧТОБЫ ПАРАЛИЗОВАТЬ ИНТЕРНЕТ, НУЖНО ВСЕГО ЛИШЬ АКВАЛАНГ И ПАРА КУСАЧЕК.

Хоть перерезать подводный коммуникационный кабель и довольно трудно (тысячи вольт протекающих по каждому из них, как одна причина), как показывает практика (Египет, 2013 год), возможно.

Подводный кабель связи

К северу от Александрии было задержано несколько людей в гидрокостюмах, которые намеренно пытались прорезать кабель Юго-Восток-Азия-Ближний Восток-Запад-Европа 4, который протягивается на 12,500 мили и соединяет три континента. Эта попытка оставила 60% населения Египта без доступа к Интернету.

9. ПОДВОДНЫЕ КАБЕЛЯ ОЧЕНЬ ТРУДНО РЕМОНТИРОВАТЬ, НО 150 ЛЕТ ОПЫТА НАУЧИЛИ НАС НЕКОТОРЫМ УЛОВКАМ.

Если у вас вызывает затруднение замена одного Интернет-кабеля за вашим столом, представьте сколько труда уходит на замену твердого, сломанного кабеля на дне океана. При повреждении подводного коммуникационного кабеля на починку отправляют специальные ремонтные корабли. Если кабель находится на мелководье, активируют роботов, которые захватывают кабель и буксируют его к поверхности. Если же кабель находится на глубоководье, на глубине 2000 метров и ниже, то корабли опускают на дно специально разработанные крюки, которые также захватывают кабель и поднимают его на поверхность для починки. Чтобы упростить работу, эти крюки иногда разрезают кабель пополам. Затем ремонтный корабль по очереди поднимает на поверхность каждую часть для починки.

10. СРОК СЛУЖБЫ ПОДВОДНЫХ КОММУНИКАЦИОННЫХ КАБЕЛЕЙ СОСТАВЛЯЕТ 25 ЛЕТ.

По состоянию на 2014 года, на дне океана находится 285 подводных коммуникационных кабеля. 22 из них еще не используются. Их называют «темными кабелями» (когда их активируют, они будут считаться «включенными»). Подводные коммуникационные кабеля имеют срок службы равный 25 годам, в течение которых они считаются экономически целесообразными с точки зрения потенциала.
Однако, за последнее десятилетие, потребление Интернет-данных резко возросло. В 2013 году потребление интернет-трафика составило 5 гигабайт на душу населения; это число, как ожидается к 2018 год, достигнет 14 гигабайт на душу населения. Такое увеличение, очевидно, представит проблему нагрузки и вызовет необходимость более частого обновления кабелей.

Источник

Коммуникационная инфраструктура – это то, что помогает нам почти мгновенно узнавать новости с других стран и континентов, она тесно связано с технологиями управления и обработки данных, компьютерными и интернет технологиями.

Но задумывались ли вы о том, как к нам попадает вся эта информация. Города буквально закутаны сетью кабелей, проводов, умело спрятанных в стены зданий и под землю. Но не только города и страны, вся планета окутана своеобразной паутиной, поскольку миллионы подводных кабелей проложены по морскому дну.

Подводные оптические кабели связи

Подводная коммуникационная инфраструктура в мире существует давно и активно продолжает развиваться. На этой интерактивной карте показаны главные мировые кабели, которые позволяют интернет и другим данным попадать из одной стороны света в другую, через океаны, и, в конечном счете, в ваш дом.

Подводные коммуникации. Карта

Если навести мышку или кликнуть на любой из показанных кабелей (или выбрать его в меню сайта), то можно узнать более подробную информацию (название, длину, соединяемые страны и др.).
А для тех, кто любит позаботиться обо всем заранее, следует учесть что не за горами и год дракона 2012 который ассоциируется с водной стихией, но в тоже время относится к стихии огня, поэтому следует заранее продумать что подарить близким на этот праздник.

Кабели, представленные в данном разделе нашего интернет-магазина «АкваЦентр», предназначены для стационарной и нестационарной прокладки, как внутри помещений, так и снаружи. Такие элементы широко используются на открытом грунте и в кабельной канализации, в том числе во взрывоопасных зонах всех классов и местах, которые подвержены воздействию блуждающих токов.

Подводный кабель КВВ и КВВП служат в качестве присоединительного элемента к различным электрическим приборам, устройствам и аппаратам при номинальном напряжении до 660В переменного тока (частота 400Гц) или 1000В постоянного тока.

Кабель для подводной прокладки может использоваться при следующих температурах окружающей среды

Обычное исполнение - -40° до +80°C;

Хладостойкое исполнение «ХЛ» - -60° до +80°C;

Теплостойкое исполнение «105» - 40° до +105°C.

Из чего выходит, что такие кабели разрешено применять в любых климатических районах, включая дальний север и тропики. Но монтаже таких кабелей должен осуществляться при температурах не ниже 15°С (обычное исполнение) или 30°С (хладостойкое исполнение) ниже нуля. Данные кабели не должны подвергаться прямому солнечному излучению. Если учитывать все меры эксплуатационной предосторожности, то подводный кабель прослужит не менее 20-30 лет.

Конструкция

Кабель для подводной прокладки КВВ или КВВП представляет собой многопроволочные жилы (не ниже четвертого класса) общей скрутки или же скрученные (пары/тройки/четверки) с цифровой или цветовой маркировкой жил. Поверх сердечника имеется специальная обмотка, которая выполнена из водоизоляционной ленты, препятствующая попаданию влаги при механическом повреждении внешней оболочки.

Подводный кабель КВВ и КВВП в обычном исполнении выпускаются с оболочкой и изоляцией из поливинилхлорида (ПВХ), с медными многопроволочными жилами. Если речь о бронированном кабеле (КВВБ) - то это стальная оцинкованная проволока или ленточная броня. Такие кабели могут иметь общий экран из алюмофлекса с дренажной луженой медной жилой.

Интернет-магазин «АкваЦентр» предлагает подводные кабели в широком ассортименте выбора. Подобрать для своих подходящих нужд оптовую сантехнику вы можете в наших электронных каталогах, которые доступны круглосуточно на нашем сайте!